A uniqueness theorem for entanglement measures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A uniqueness theorem for entanglement measures

We obtain a mathematically simple characterization of all functionals coinciding with the von Neumann reduced entropy on pure states based on the Khinchin-Faddeev axiomatization of Shannon entropy and give a physical interpretation of the axioms in terms of entanglement.

متن کامل

The uniqueness theorem for entanglement measures

We review the mathematics of the theory of entanglement measures. As well as giving proofs from first principles for some well-known and important results, we provide a sharpened version of a uniqueness theorem which gives necessary and sufficient conditions for an entanglement measure to coincide with the reduced von Neumann entropy on pure states. We also prove several versions of a theorem o...

متن کامل

A Uniqueness Theorem for Clustering

Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like “What distinguishes a clustering of data from other data partitioning?”, “Are there any principles governing all clustering paradigms?”, “How should a user choose an appropriate clustering algorithm for a particular task?”, etc. are almost completely unanswered by the e...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2001

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.1370954